Correlation Engine 2.0
Clear Search sequence regions


  • behaviors (1)
  • homo (2)
  • lipid (2)
  • lipid bilayers (2)
  • palmitoyl (1)
  • phases (1)
  • phospholipid (3)
  • Protein B (4)
  • Protein C (3)
  • SP B (12)
  • SP C (10)
  • sp- b protein (1)
  • swine (1)
  • Sizes of these terms reflect their relevance to your search.

    Pulmonary surfactant is a lipid/protein mixture that reduces surface tension at the respiratory air-water interface in lungs. Among its nonlipidic components are pulmonary surfactant-associated proteins B and C (SP-B and SP-C, respectively). These highly hydrophobic proteins are required for normal pulmonary surfactant function, and whereas past literature works have suggested possible SP-B/SP-C interactions and a reciprocal modulation effect, no direct evidence has been yet identified. In this work, we report an extensive fluorescence spectroscopy study of both intramolecular and intermolecular SP-B and SP-C interactions, using a combination of quenching and FRET steady-state and time-resolved methodologies. These proteins are compartmentalized in full surfactant membranes but not in pure 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) vesicles, in accordance with their previously described preference for liquid disordered phases. From the observed static self-quenching and homo-FRET of BODIPY-FL labeled SP-B, we conclude that this protein forms homoaggregates at low concentration (lipid:protein ratio, 1:1000). Increases in polarization of BODIPY-FL SP-B and steady-state intensity of WT SP-B were observed upon incorporation of under-stoichiometric amounts of WT SP-C. Conversely, Marina Blue-labeled SP-C is quenched by over-stoichiometric amounts of WT SP-B, whereas under-stoichiometric concentrations of the latter actually increase SP-C emission. Time-resolved hetero-FRET from Marina Blue SP-C to BODIPY-FL SP-B confirm distinct protein aggregation behaviors with varying SP-B concentration. Based on these multiple observations, we propose a model for SP-B/SP-C interactions, where SP-C might induce conformational changes on SP-B complexes, affecting its aggregation state. The conclusions inferred from the present work shed light on the synergic functionality of both proteins in the pulmonary surfactant system. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

    Citation

    Elisa J Cabré, Marta Martínez-Calle, Manuel Prieto, Alexander Fedorov, Bárbara Olmeda, Luís M S Loura, Jesús Pérez-Gil. Homo- and hetero-oligomerization of hydrophobic pulmonary surfactant proteins SP-B and SP-C in surfactant phospholipid membranes. The Journal of biological chemistry. 2018 Jun 15;293(24):9399-9411

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 29700110

    View Full Text