Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Trimethylamine-N-oxide (TMAO) gained considerable attention because of its role as a cardiovascular risk biomarker. Organic cation transporter 2 (OCT2) mediates TMAO uptake into renal proximal tubular cells. Here we investigated the potential role of multidrug and toxin extrusion protein 1 (MATE1) for translocation of TMAO across the luminal membrane of proximal tubular cells. HEK293 cells stably expressing OCT2 (HEK-OCT2) or MATE1 (HEK-MATE1) were used for uptake studies. Transcellular transport of TMAO was investigated using monolayers of MDCK control cells (MDCK-Co) as well as single- (MDCK-OCT2, MDCK-MATE1) and double-transfected cells (MDCK-OCT2-MATE1). In line with previous studies, HEK-OCT2 cells revealed a 2.4-fold uptake of TMAO compared to control cells (p < 0.001), whereas no significant uptake was observed in HEK-MATE1. In monolayers of MDCK cells, polarised TMAO transcellular transport was not significantly different between MDCK-Co and MDCK-OCT2 cells, but significantly increased in MDCK-MATE1 (p < 0.05) and MDCK-OCT2-MATE1 cells (p < 0.001). The OCT/MATE inhibitor trimethoprim abolished TMAO translocation in MDCK-OCT2-MATE1 cells (p < 0.05). The present data suggest that MATE1 contributes to renal elimination of TMAO. For selected MATE substrates, such as TMAO, uptake studies using non-polarised MATE-expressing cells can reveal false negative results compared to studies using polarised monolayers.

Citation

A Gessner, J König, M F Fromm. Contribution of multidrug and toxin extrusion protein 1 (MATE1) to renal secretion of trimethylamine-N-oxide (TMAO). Scientific reports. 2018 Apr 27;8(1):6659

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 29704007

View Full Text