Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Photoreceptor-specific ciliopathies often affect a structure that is considered functionally homologous to the ciliary transition zone (TZ) called the connecting cilium (CC). However, it is unclear how mutations in certain ciliary genes disrupt the photoreceptor CC without impacting the primary cilia systemically. By applying stochastic optical reconstruction microscopy technology in different genetic models, we show that the CC can be partitioned into two regions: the proximal CC (PCC), which is homologous to the TZ of primary cilia, and the distal CC (DCC), a photoreceptor-specific extension of the ciliary TZ. This specialized distal zone of the CC in photoreceptors is maintained by SPATA7, which interacts with other photoreceptor-specific ciliary proteins such as RPGR and RPGRIP1. The absence of Spata7 results in the mislocalization of DCC proteins without affecting the PCC protein complexes. This collapse results in destabilization of the axonemal microtubules, which consequently results in photoreceptor degeneration. These data provide a novel mechanism to explain how genetic disruption of ubiquitously present ciliary proteins exerts tissue-specific ciliopathy phenotypes. © 2018 Dharmat et al.

Citation

Rachayata Dharmat, Aiden Eblimit, Michael A Robichaux, Zhixian Zhang, Thanh-Minh T Nguyen, Sung Yun Jung, Feng He, Antrix Jain, Yumei Li, Jun Qin, Paul Overbeek, Ronald Roepman, Graeme Mardon, Theodore G Wensel, Rui Chen. SPATA7 maintains a novel photoreceptor-specific zone in the distal connecting cilium. The Journal of cell biology. 2018 Aug 06;217(8):2851-2865

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 29899041

View Full Text