Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The worldwide incidence of neisserial infections, particularly gonococcal infections, is increasingly associated with antibiotic-resistant strains. In particular, extensively drug-resistant Neisseria gonorrhoeae strains that are resistant to third-generation cephalosporins are a major public health concern. There is a pressing clinical need to identify new targets for the development of antibiotics effective against Neisseria-specific processes. In this study, we report that the bacterial disulfide reductase DsbD is highly prevalent and conserved among Neisseria spp. and that this enzyme is essential for survival of N. gonorrhoeae DsbD is a membrane-bound protein that consists of two periplasmic domains, n-DsbD and c-DsbD, which flank the transmembrane domain t-DsbD. In this work, we show that the two functionally essential periplasmic domains of Neisseria DsbD catalyze electron transfer reactions through unidirectional interdomain interactions, from reduced c-DsbD to oxidized n-DsbD, and that this process is not dictated by their redox potentials. Structural characterization of the Neisseria n- and c-DsbD domains in both redox states provides evidence that steric hindrance reduces interactions between the two periplasmic domains when n-DsbD is reduced, thereby preventing a futile redox cycle. Finally, we propose a conserved mechanism of electron transfer for DsbD and define the residues involved in domain-domain recognition. Inhibitors of the interaction of the two DsbD domains have the potential to be developed as anti-neisserial agents. © 2018 Smith et al.

Citation

Roxanne P Smith, Biswaranjan Mohanty, Shakeel Mowlaboccus, Jason J Paxman, Martin L Williams, Stephen J Headey, Geqing Wang, Pramod Subedi, Bradley C Doak, Charlene M Kahler, Martin J Scanlon, Begoña Heras. Structural and biochemical insights into the disulfide reductase mechanism of DsbD, an essential enzyme for neisserial pathogens. The Journal of biological chemistry. 2018 Oct 26;293(43):16559-16571

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 30181210

View Full Text