Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Lower extremity deep vein thrombosis (LEDVT), a common peripheral vascular disease caused by a blood clot in a deep vein is usually accompanied by swelling of the lower limbs. MicroRNAs (miRs) have been reported to play roles in LEDVT. We aimed to investigate the effect of miR-495 on LEDVT via toll-like receptor 4 (TLR4) signaling pathway through interleukin 1 receptor type 1 (IL1R1). LEDVT mouse model was established, and the femoral vein (FV) tissues were collected to detect expressions of miR-495, IL1R1, and TLR4 signaling-related genes. The expressions of both CD31 and CD34 (markers for endothelial progenitor cells) in the FV endothelial cells as well as the proportion of CD31+/CD34+ cells in peripheral blood were measured in order to evaluate thrombosis. The effect of miR-495 on cell viability, cell cycle, and apoptosis was analyzed. IL1R1 was confirmed as the target gene of miR-495. Besides, inhibiting the miR-495 expression could increase IL1R1 expression along with activating the TLR4 signaling pathway. The total number of the leukocytes along with the ratio of weight to length of thrombus in the FV tissue showed an increase. The overexpression of miR-495 could promote FV endothelial cell viability. By injecting agomiR-495 and antagomiR-495 in vivo, the number of leukocytes in the FV tissues and the ratio of weight to length of thrombus were significantly decreased in the mice injected with the overexpressed miR-495, and the IL1R1/TLR4 signaling pathway was inhibited. Collectively, overexpressed miR-495 directly promotes proliferation while simultaneously inhibiting apoptosis of FV endothelial cells, alleviating FV thrombosis by inhibiting IL1R1 via suppression of TLR4 signaling pathway. © 2018 The Author(s).

Citation

Ke-Cheng Tang, Zhi-Peng Yang, Qiu Zeng, Jing Wang, Feng Guo, Yu Zhao. Effect of miR-495 on lower extremity deep vein thrombosis through the TLR4 signaling pathway by regulation of IL1R1. Bioscience reports. 2018 Dec 21;38(6)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 30287499

View Full Text