Correlation Engine 2.0
Clear Search sequence regions

Through a combination of chemical and enzymatic approaches a series of sequence-specific tubercidin-substituted ppp5'A2'p(5'A2'p)n5'A (n = 1 to about 10; 2-5A) analogues were generated. In addition to the previously developed methodology of Imai and Torrence [Imai, J., & Torrence, P.F. (1985) J. Org. Chem. 50, 1418-1420], a new approach to synthesis of 2',5'-linked oligonucleotides utilized adenosine in 3',5' linkage as a precursor to the targeted 5'-terminus of the desired product. For instance, A3'p5'A could be condensed under conditions of lead ion catalysis with tubercidin 5'-phosphate to give A3'p5'A2'p5'(c7A). Treatment with the 3',5'-specific nuclease P1 led to p5'A2'p5'(c7A). The combined use of the above procedures led to the synthesis of p5'(c7A)2'p5'A2'p5'A, p5'A2'p5'(c7A)2'p5'A, p5'A2'p5'A2'p5'(c7A), and p5'A2p5'(c7A)2'p5'(c7A), which were converted to their corresponding 5'-triphosphates by the usual methods. Evaluation of these analogues for their ability to bind to and activate the 2-5A-dependent endonuclease (RNase L) of mouse L cells showed that there were small changes (less than or equal to 10-fold) in the ability of the four tubercidin analogues to bind to RNase L. However, whenever the first and/or third adenosine nucleotide units were replaced by tubercidin, a dramatic decrease in ability to activate RNase L occurred. Only the second (from the 5'-terminus) adenosine residue could be replaced by tubercidin without any effect on RNase L activation ability.


J C Jamoulle, K Lesiak, P F Torrence. Respective role of each of the purine N7 nitrogens of 5'-O-triphosphoadenylyl(2'----5')adenylyl(2'----5')adenosine in binding to and activation of the RNase L of mouse cells. Biochemistry. 1987 Jan 27;26(2):376-83

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 3030408

View Full Text