Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Serine-arginine (SR) proteins are essential splicing factors containing a canonical RNA recognition motif (RRM), sometimes followed by a pseudo-RRM, and a C-terminal arginine/serine-rich (RS) domain that undergoes multisite phosphorylation. Phosphorylation regulates the localization and activity of SR proteins, and thus may provide insight into their differential biological roles. The phosphorylation mechanism of the prototypic SRSF1 by serine-arginine protein kinase 1 (SRPK1) has been well-studied, but little is known about the phosphorylation of other SR protein members. In the present study, interaction and kinetic assays unveiled how SRSF1 and the single RRM-containing SRSF3 are phosphorylated by SRPK2, another member of the SRPK family. We showed that a conserved SRPK-specific substrate-docking groove in SRPK2 impacts the binding and phosphorylation of both SR proteins, and the localization of SRSF3. We identified a nonconserved residue within the groove that affects the kinase processivity. We demonstrated that, in contrast to SRSF1, for which SRPK-mediated phosphorylation is confined to the N-terminal region of the RS domain, SRSF3 phosphorylation sites are spread throughout its entire RS domain in vitro Despite this, SRSF3 appears to be hypophosphorylated in cells at steady state. Our results suggest that the absence of a pseudo-RRM renders the single RRM-containing SRSF3 more susceptible to dephosphorylation by phosphatase. These findings suggest that the single RRM- and two RRM-containing SR proteins represent two subclasses of phosphoproteins in which phosphorylation statuses are maintained by unique mechanisms, and pose new directions to explore the distinct roles of SR proteins in vivo. © 2019 Long et al.

Citation

Yunxin Long, Weng Hong Sou, Kristen Wing Yu Yung, Haizhen Liu, Stephanie Winn Chee Wan, Qingyun Li, Chuyue Zeng, Carmen Oi Kwan Law, Gordon Ho Ching Chan, Terrence Chi Kong Lau, Jacky Chi Ki Ngo. Distinct mechanisms govern the phosphorylation of different SR protein splicing factors. The Journal of biological chemistry. 2019 Jan 25;294(4):1312-1327

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 30478176

View Full Text