Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

CLV3p-mediated phosphorylation of MPK3 and MPK6 occurs via CLV1 and BAM1 receptors to regulate the maintenance of SAM development. The CLAVATA peptide-receptor (CLV3p-CLV1) pathway modulates a homeodomain master regulator WUSCHEL (WUS) transcription factor in the shoot apical meristem (SAM) with poorly defined signaling mechanisms. Here, we report that mitogen-activated protein kinases (MAPKs, also known as MPKs in plants) act in an intracellular signaling cascade to play an important role in the maintenance of SAM development. Interestingly, the application of exogenous CLV3p triggers rapid signaling in the SAM via dynamic activation of MPK3 and MPK6, which are positively regulated by both CLV1 and BARELY ANY MERISTEM 1 (BAM1) receptors. Surprisingly, the timing of MAPK activation is tightly correlated with the transcriptional repression of WUS expression in the SAM, indicating a fast CLV3p-CLV1/BAM1 signaling event. Furthermore, conditional mpk3,6 double mutants exhibited CLV3p insensitivity in stem cell maintenance manifested by the persistent SAM growth in the presence of exogenous CLV3p signals, as well as elevated WUS expression and repressed WUS-specific target genes. Taken together, these results suggest that MPK3 and MPK6 activated by CLV3p signals through mainly CLV1 and BAM1 receptors are key regulators controlling stem cell homeostasis in the SAM.

Citation

Horim Lee, Ye Sol Jun, Ok-Kyoung Cha, Jen Sheen. Mitogen-activated protein kinases MPK3 and MPK6 are required for stem cell maintenance in the Arabidopsis shoot apical meristem. Plant cell reports. 2019 Mar;38(3):311-319

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 30552452

View Full Text