Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

There is evidence that the endothelium is responsive to both the rate and magnitude of increases in shear stress. However, whether flow-mediated dilation stimulated by sustained increases in shear stress (SS-FMD) is rate sensitive in humans is unknown. The purpose of this investigation was to test whether ramp (gradual) and step (instantaneous) increases in shear stress elicit disparate SS-FMD. Young, healthy men (n = 18, age = 22 ± 2 years, body mass index = 25 ± 3 kg m-2) performed two 11-min bouts of rhythmic handgrip exercise; one with a 5.5-min ramp-increase in shear stress and one with an immediate step increase in shear stress. Ramp increases in shear stress were achieved through incremental increases in handgrip exercise intensity [increases of 4% maximum voluntary contraction (MVC) every 30 s for 5.5 min, ending at 44% MVC] and step increases in shear stress were achieved through a combination of arterial compression and commencing handgrip exercise at 44% MVC. Shear rate was greater in the step versus ramp protocol in minutes 1-6, but not different thereafter. Similarly, SS-FMD was greater in the step versus ramp protocol during minutes 2-6, but similar in minutes 7-11 (minute 11: ramp 8.7 ± 4.6%; step 9.4 ± 3.6%; P = 0.343). SS-FMD continued to increase over time with maintenance of a steady shear stress stimulus (step minutes 2-11: 0.51 ± 0.36% min-1; ramp minutes 7-11: 0.64 ± 0.57% min-1; P = 0.259). These findings indicate that in the brachial artery of humans, the magnitude of SS-FMD is determined by the magnitude and duration, but not the rate, of increases in shear stress.

Citation

Joshua C Tremblay, Jennifer S Williams, Kyra E Pyke. Ramp and step increases in shear stress result in a similar magnitude of brachial artery flow-mediated dilation. European journal of applied physiology. 2019 Mar;119(3):611-619

Expand section icon Mesh Tags


PMID: 30603795

View Full Text