Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Holliday junction (HJ) resolution by resolving enzymes is essential for chromosome segregation and recombination-mediated DNA repair. HJs undergo two types of structural dynamics that determine the outcome of recombination: conformer exchange between two isoforms and branch migration. However, it is unknown how the preferred branch point and conformer are achieved between enzyme binding and HJ resolution given the extensive binding interactions seen in static crystal structures. Single-molecule fluorescence resonance energy transfer analysis of resolving enzymes from bacteriophages (T7 endonuclease I), bacteria (RuvC), fungi (GEN1) and humans (hMus81-Eme1) showed that both types of HJ dynamics still occur after enzyme binding. These dimeric enzymes use their multivalent interactions to achieve this, going through a partially dissociated intermediate in which the HJ undergoes nearly unencumbered dynamics. This evolutionarily conserved property of HJ resolving enzymes provides previously unappreciated insight on how junction resolution, conformer exchange and branch migration may be coordinated.

Citation

Ruobo Zhou, Olivia Yang, Anne-Cécile Déclais, Hyeonseok Jin, Gwang Hyeon Gwon, Alasdair D J Freeman, Yunje Cho, David M J Lilley, Taekjip Ha. Junction resolving enzymes use multivalency to keep the Holliday junction dynamic. Nature chemical biology. 2019 Mar;15(3):269-275

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 30664685

View Full Text