Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Anoctamin-6 (ANO6) belongs to a family of calcium (Ca2+)-activated chloride channels (CaCCs), with three splicing variants (V1, V2, and V5) showing plasma membrane expression. Unlike other CaCCs, ANO6 requires a non-physiological intracellular free calcium concentration ([Ca2+]i > 1 μM) and several minutes for full activation under a whole-cell patch clamp. Therefore, its physiological role as an ion channel is uncertain and it is more commonly considered a Ca2+-dependent phospholipid scramblase. Here, we demonstrate that physiological temperature (37 °C) increases ANO6 Ca2+ sensitivity under a whole-cell patch clamp; V1 was activated by 1 μM [Ca2+]i, whereas V2 and V5 were activated by 300 nM [Ca2+]i. Increasing the temperature to 42 °C led to activation of all ANO6 variants by 100 nM [Ca2+]i. The delay time for activation of the three variants was significantly shortened at 37 °C. Notably, the temperature-dependent Ca2+-sensitisation of ANO6 became insignificant under inside-out patch clamp, suggesting critical roles of unknown cytosolic factors. Unlike channel activity, 27 °C but not 37 °C (physiological temperature) induced the scramblase activity of ANO6 at submicromolar [Ca2+]i (300 nM), irrespective of variant type. Our results reveal a physiological ion conducting property of ANO6 at 37 °C and suggest that ANO6 channel function acts separately from its scramblase activity.

Citation

Haiyue Lin, Ikhyun Jun, Joo Han Woo, Min Goo Lee, Sung Joon Kim, Joo Hyun Nam. Temperature-dependent increase in the calcium sensitivity and acceleration of activation of ANO6 chloride channel variants. Scientific reports. 2019 Apr 30;9(1):6706

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31040335

View Full Text