Correlation Engine 2.0
Clear Search sequence regions

  • CATH (1)
  • databases factual (1)
  • native (1)
  • Neural (3)
  • Sizes of these terms reflect their relevance to your search.

    Recent advances in computational methods have facilitated large-scale sampling of protein structures, leading to breakthroughs in protein structural prediction and enabling de novo protein design. Establishing methods to identify candidate structures that can lead to native folds or designable structures remains a challenge, since few existing metrics capture high-level structural features such as architectures, folds and conformity to conserved structural motifs. Convolutional Neural Networks (CNNs) have been successfully used in semantic segmentation-a subfield of image classification in which a class label is predicted for every pixel. Here, we apply semantic segmentation to protein structures as a novel strategy for fold identification and structure quality assessment. We train a CNN that assigns each residue in a multi-domain protein to one of 38 architecture classes designated by the CATH database. Our model achieves a high per-residue accuracy of 90.8% on the test set (95.0% average per-class accuracy; 87.8% average per-structure accuracy). We demonstrate that individual class probabilities can be used as a metric that indicates the degree to which a randomly generated structure assumes a specific fold, as well as a metric that highlights non-conformative regions of a protein belonging to a known class. These capabilities yield a powerful tool for guiding structural sampling for both structural prediction and design. The trained classifier network, parser network, and entropy calculation scripts are available for download at, with detailed usage instructions provided at the download page. A step-by-step tutorial for setup is provided at All Rosetta commands, RosettaRemodel blueprints, and predictions for all datasets used in the study are available in the Supplementary Information. Supplementary data are available at Bioinformatics online. © The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:


    Raphael R Eguchi, Po-Ssu Huang. Multi-scale structural analysis of proteins by deep semantic segmentation. Bioinformatics (Oxford, England). 2020 Mar 01;36(6):1740-1749

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 31424530

    View Full Text