Correlation Engine 2.0
Clear Search sequence regions


Adipose tissue plays a major role in the regulation of systemic metabolic homeostasis, with the AP2 adaptor complex being important in clathrin-mediated endocytosis (CME) of various cell surface receptors, including glucose transporter 4, the insulin receptor, and β-adrenergic receptors (ARs). One of the AP2 subunits, adaptor-related protein complex 2, α2 subunit (Ap2a2), has recently been identified as a peroxisome proliferator-activated receptor (PPARtarget gene. The effects of PPARα on the AP2 adaptor complex and CME are unknown. We generated adipocyte-specific Ap2a2 knockout mice and investigated their metabolism when fed a standard chow or high-fat diet, without and with supplementation with the PPARα-agonist WY-14643 (WY). Although Ap2a2 deletion had only minor effects on glycaemic control, it led to substantial impairment in β-adrenergic activation of lipolysis, as evidenced by a loss of cAMP response, PKA activation, and glycerol/fatty acid release. These differences were related to increased cell surface localization of the β2- and β3-ARs. Lipolytic defects were accompanied by impaired WY-mediated loss of fat mass and whole-body fat oxidation. This study demonstrates a novel role for PPARα in β-adrenergic regulation of adipose tissue lipolysis and for adipose tissue in supplying adequate substrate to other peripheral tissues to accommodate the increase in systemic fatty acid oxidation that occurs upon treatment with PPARα agonists.-Montgomery, M. K., Bayliss, J., Keenan, S., Rhost, S., Ting, S. B., Watt, M. J. The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue.

Citation

Magdalene K Montgomery, Jacqueline Bayliss, Stacey Keenan, Sarah Rhost, Stephen B Ting, Matthew J Watt. The role of Ap2a2 in PPARα-mediated regulation of lipolysis in adipose tissue. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2019 Dec;33(12):13267-13279

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31533003

View Full Text