Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Droplet-digital polymerase chain reaction (ddPCR) technique was set up to detect/quantify Merkel cell polyomavirus (MCPyV) DNA in clinical specimens, including chorionic villi and peripheral blood mononuclear cells (PBMCs) from spontaneous abortion (SA)-affected females. This ddPCR assay showed high accuracy, sensitivity, and specificity in detecting MCPyV DNA cloned in a recombinant plasmid vector, the control. ddPCR was extended to MCPyV DNA to investigate/quantify its sequences in clinical samples. Overall, 400 samples were analyzed, that is, 100 chorionic villi and 100 PBMCs, from SA females (n = 100), the cases, and 100 chorionic villi and 100 PBMCs from females who underwent voluntary pregnancy interruption (VI, n = 100), the control. MCPyV DNA was detected in 4/100 (4%) and 5/100 (5%) of SA and VI chorionic villi, respectively. The mean viral DNA load was 1.99 ( ± 0.94 standard mean deviation [SD]) copy/104 cells in SA and 3.02 ( ± 1.86 [SD]) copy/104 cells in VI. In PBMCs, MCPyV DNA was revealed in 9/100 (9%) and 14/100 (14%) of SA and VI, with a mean of 2.09 ( ± 1.17 [SD]) copy/104 cells and 4.09 ( ± 4.26 [SD]) copy/104 cells in SA and VI, respectively. MCPyV gene expression analysis by quantitative PCR for the large T antigen (LT) and viral capsid protein 1 (VP1) showed their mRNAs in 2/4 (50%) SA- and 2/5 (40%) VI-MCPyV-positive samples. MCPyV DNA was detected/quantified using the ddPCR technique, in chorionic villi and PBMCs from SA and VI. In our experimental conditions, ddPCR provided a powerful tool to detect/quantify MCPyV DNA sequences in clinical samples. © 2019 Wiley Periodicals, Inc.

Citation

Andrea Tagliapietra, John Charles Rotondo, Ilaria Bononi, Elisa Mazzoni, Federica Magagnoli, Lucia Oton Gonzalez, Carlo Contini, Fortunato Vesce, Mauro Tognon, Fernanda Martini. Droplet-digital PCR assay to detect Merkel cell polyomavirus sequences in chorionic villi from spontaneous abortion affected females. Journal of cellular physiology. 2020 Mar;235(3):1888-1894

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31549405

View Full Text