Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Combinations of chemotherapy with immunotherapy have seen recent clinical success, including two approvals of anti-PD-1/L1 agents in combination with taxane-based chemotherapy in non-small cell lung cancer and triple-negative breast cancer. Here, we present a study on the combination activity and mechanistic rationale of a novel EphA2-targeted liposomal taxane (EphA2-ILs-DTXp) and anti-PD-1. This combination was highly active in mouse syngeneic tumor models, with complete responses observed in 3 of 5 models. In the EMT-6 tumor model, combination of EphA2-ILs-DTXp with anti-PD-1 resulted in a 60% complete response rate, with durable responses that were resistant to rechallenge. These responses were not observed in the absence of CD8+ T cells. Characterization of the immune infiltrates in EMT-6 tumors reveals increased CD8+ T cells, increased CD8+ IFNγ+ CTLs, and an increased CD8/regulatory T-cell (Treg) ratio. These immunomodulatory effects were not observed in mice treated with a combination of docetaxel and anti-PD-1. Pharmacokinetic analysis revealed that the AUC of docetaxel was increased 15 times, from 52.1 to 785 ng/mL/hour, when delivered by EphA2-ILs-DTXp. A dose reduction study of EphA2-ILs-DTXp showed a dose-response relationship for both tumor growth inhibition and the CD8/Treg ratio. Our data indicate that synergism between docetaxel and anti-PD-1 is achievable with nanoliposomal delivery. ©2019 American Association for Cancer Research.

Citation

Walid S Kamoun, Anne-Sophie Dugast, James J Suchy, Stephanie Grabow, Ross B Fulton, James F Sampson, Lia Luus, Michael Santiago, Alexander Koshkaryev, Gang Sun, Vasileios Askoxylakis, Eric Tam, Zhaohua Richard Huang, Daryl C Drummond, Andrew J Sawyer. Synergy between EphA2-ILs-DTXp, a Novel EphA2-Targeted Nanoliposomal Taxane, and PD-1 Inhibitors in Preclinical Tumor Models. Molecular cancer therapeutics. 2020 Jan;19(1):270-281

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31597714

View Full Text