Correlation Engine 2.0
Clear Search sequence regions

  • 2- cys peroxiredoxins human (1)
  • cellular (1)
  • drosophila (3)
  • human cells (2)
  • humans (1)
  • hydrogen (3)
  • Jafrac1 (2)
  • kinases (2)
  • MAPK (4)
  • mekk (1)
  • Mekk1 (4)
  • MEKK4 (2)
  • p38 (6)
  • p38 MAPK (3)
  • peroxiredoxins (4)
  • signal (2)
  • Sizes of these terms reflect their relevance to your search.

    The p38 mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in the cellular response to various stresses and its deregulation accompanies pathological conditions such as cancer and chronic inflammation. Hydrogen peroxide (H2O2) is a well-established activator of the p38 MAPK signaling pathway. However, the mechanisms of H2O2-induced p38 activation are not yet fully understood. In Drosophila cells, we find that H2O2-induced activation of p38 depends on the MAPK kinase kinase (MAP3K) Mekk1. In line with the emerging role of peroxiredoxins as H2O2 sensors and signal transmitters we observe an H2O2-dependent interaction between Mekk1 and the cytosolic peroxiredoxin of Drosophila, Jafrac1. In human cells, MEKK4 (the homologue of Mekk1) and peroxiredoxin-2 (Prx2) interact in a similar manner, suggesting an evolutionarily conserved mechanism. In both organisms, H2O2 induces transient disulfide-linked conjugates between the MAP3K and a typical 2-Cys peroxiredoxin. We propose that these conjugates represent the relaying of oxidative equivalents from H2O2 to the MAP3K and that the oxidation of Mekk1/MEKK4 leads to the downstream activation of p38 MAPK. Indeed, the depletion of cytosolic 2-Cys peroxiredoxins in human cells diminished H2O2-induced activation of p38 MAPK. Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.


    Ana G Barata, Tobias P Dick. A role for peroxiredoxins in H2O2- and MEKK-dependent activation of the p38 signaling pathway. Redox biology. 2020 Jan;28:101340

    Expand section icon Mesh Tags

    Expand section icon Substances

    PMID: 31629169

    View Full Text