Correlation Engine 2.0
Clear Search sequence regions


  • azides (2)
  • e coli (3)
  • escherichia coli (3)
  • propidium (13)
  • reagents (4)
  • uv light (3)
  • Sizes of these terms reflect their relevance to your search.

    We report a specific and sensitive method to improve the coupling of propidium monoazide (PMA) with DNA derived from killed cells of Escherichia coli using UV light of 365 nm. UV light of three different intensities mainly 2.4 × 103, 4.8 × 103, and 7.2 × 103 μJ/cm2 was applied to E. coli cells each for 1, 3, and 5 min. PMA was found to be successfully cross-linked with the DNA from killed cells of E. coli at 4.8 × 103 μJ/cm2 in 3 min leading to the complete inhibition of PCR amplification of DNA derived from PMA-treated heat-killed cells. In spiked phosphate-buffered saline and potable water samples, the difference of the Cq values between PMA-treated viable cells and PMA-untreated viable cells ranged from -0.17 to 0.2, demonstrating that UV-induced PMA activation had a negligible effect on viable cells. In contrast, the difference of the Cq values between PMA-treated heat-killed cells and PMA-untreated heat-killed cells ranged from 8.9 to 9.99, indicating the ability of PMA to inhibit PCR amplification of DNA derived from killed cells to an equivalent as low as 100 CFU. In conclusion, this UV-coupled PMA-qPCR assay provided a rapid and sensitive methodology to selectively detect viable E. coli cells in spiked water samples within 4 h.

    Citation

    Rehan Deshmukh, Sunil Bhand, Utpal Roy. A novel method for rapid and sensitive detection of viable Escherichia coli cells using UV-induced PMA-coupled quantitative PCR. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]. 2020 Jun;51(2):773-778

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 31654340

    View Full Text