Correlation Engine 2.0
Clear Search sequence regions


  • Akt (3)
  • akt protein (1)
  • Ang- 1 (6)
  • Angpt1 (1)
  • cell death (2)
  • glycogen (1)
  • growth factor (1)
  • mice (2)
  • microglia (1)
  • microRNA 711 (1)
  • micrornas (5)
  • miR 711 (7)
  • MIRN711 (1)
  • protein b (1)
  • rnas (1)
  • signal (1)
  • spinal cord (10)
  • target gene (1)
  • therapies (1)
  • Sizes of these terms reflect their relevance to your search.

    Spinal cord injury (SCI) causes neuronal cell death and vascular damage, which contribute to neurological dysfunction. Given that many biochemical changes contribute to such secondary injury, treatment approaches have increasingly focused on combined therapies or use of multi-functional drugs. MicroRNAs (miRs) are small (20-23 nucleotide), non-protein-coding RNAs and can negatively regulate target gene expression at the post-transcriptional level. As individual miRs can potentially modulate expression of multiple relevant proteins after injury, they are attractive candidates as upstream regulators of the secondary SCI progression. In the present study we examined the role of miR-711 modulation after SCI. Levels of miR-711 were increased in injured spinal cord early after SCI, accompanied by rapid downregulation of its target angiopoietin-1 (Ang-1), an endothelial growth factor. Changes of miR-711 were also associated with downregulation of the pro-survival protein Akt (protein kinase B), another target of miR-711, with sequential activation of glycogen synthase kinase 3 and the pro-apoptotic BH3-only molecule PUMA. Central administration of a miR-711 hairpin inhibitor after SCI limited decreases of Ang-1/Akt expression and attenuated apoptotic pathways. Such treatment also reduced neuronal/axonal damage, protected microvasculature and improved motor dysfunction following SCI. In vitro, miR-711 levels were rapidly elevated by neuronal insults, but not by activated microglia and astrocytes. Together, our data suggest that post-traumatic miR-711 elevation contributes to neuronal cell death after SCI, in part by inhibiting Ang-1 and Akt pathways, and may serve as a novel therapeutic target.

    Citation

    Boris Sabirzhanov, Jessica Matyas, Marina Coll-Miro, Laina Lijia Yu, Alan I Faden, Bogdan A Stoica, Junfang Wu. Inhibition of microRNA-711 limits angiopoietin-1 and Akt changes, tissue damage, and motor dysfunction after contusive spinal cord injury in mice. Cell death & disease. 2019 Nov 04;10(11):839

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 31685802

    View Full Text