Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The ventral portion of the rodent hippocampus (HPC; anterior in primates) has been implicated in the detection and resolution of approach-avoidance conflict, which arises when an organism encounters a stimulus that predicts both positive and negative outcomes. Previous work has found differential regulation of approach-avoidance conflict behavior by the CA3 and CA1 subfields, with inhibition of ventral CA3 increasing approach toward conflicting stimuli and inhibition of the ventral CA1 potentiating avoidance. Here, we sought to extend these findings by investigating the role of the dentate gyrus (DG), the input region of the HPC, in learned approach-avoidance conflict processing in rats. Animals were first trained to acquire three different visuotactile cue-outcome associations in separate arms of a Y-maze (appetitive, aversive, and neutral). Postacquisition, they were administered a "conflict test," in which they were presented with a choice between exploring an arm in which the appetitive and aversive cues were concurrently presented (conflict stimulus), and another arm containing the neutral stimulus. GABAR-mediated inactivation of the ventral DG, but not dorsal DG, potentiated approach behavior toward the conflict stimulus, similar to the effects of ventral CA3 inactivation. In contrast, dorsal DG, but not ventral DG, inactivation was found to impair performance on a metric spatial discrimination task, which is commonly used as a test of pattern separation. The findings of this study demonstrate a robust double dissociation between the ventral and dorsal aspects of the DG, in line with previous reports of functional differences along the longitudinal axis of the HPC. © 2019 Wiley Periodicals, Inc.

Citation

Dylan C M Yeates, Alicia Ussling, Andy C H Lee, Rutsuko Ito. Double dissociation of learned approach-avoidance conflict processing and spatial pattern separation along the dorsoventral axis of the dentate gyrus. Hippocampus. 2020 Jun;30(6):596-609

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31749280

View Full Text