Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

RNA polymerase II (RNAPII) is the workhorse of eukaryotic transcription and produces messenger RNAs and small nuclear RNAs. Stalling of RNAPII caused by transcription obstacles such as DNA damage threatens functional gene expression and is linked to transcription-coupled DNA repair. To restore transcription, persistently stalled RNAPII can be disassembled and removed from chromatin. This process involves several ubiquitin ligases that have been implicated in RNAPII ubiquitylation and proteasomal degradation. Transcription by RNAPII is heavily controlled by phosphorylation of the C-terminal domain of its largest subunit Rpb1. Here, we show that the elongating form of Rpb1, marked by S2 phosphorylation, is specifically controlled upon UV-induced DNA damage. Regulation of S2-phosphorylated Rpb1 is mediated by SUMOylation, the SUMO-targeted ubiquitin ligase Slx5-Slx8, the Cdc48 segregase as well as the proteasome. Our data suggest an RNAPII control pathway with striking parallels to known disassembly mechanisms acting on defective RNA polymerase III.

Citation

Irina Heckmann, Maximilian J Kern, Boris Pfander, Stefan Jentsch. A SUMO-dependent pathway controls elongating RNA Polymerase II upon UV-induced damage. Scientific reports. 2019 Nov 29;9(1):17914

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31784551

View Full Text