Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Proteins with intrinsically disordered regions (IDRs) have large hydrodynamic radii, compared with globular proteins of equivalent weight. Recent experiments showed that IDRs with large radii can create steric pressure to drive membrane curvature during Clathrin-mediated endocytosis (CME). Epsin and Eps15 are two CME proteins with IDRs that contain multiple motifs for binding the adaptor protein AP2, but the impact of AP2-binding on these IDRs is unknown. Some IDRs acquire binding-induced function by forming a folded quaternary structure, but we hypothesize that the IDRs of Epsin and/or Eps15 acquire binding-induced function by increasing their steric volume. We explore this hypothesis in silico by generating conformational ensembles of the IDRs of Epsin (4 million structures) or Eps15 (3 million structures), then estimating the impact of AP2-binding on Radius of Gyration (RG). Results show that the ensemble of Epsin IDR conformations that accommodate AP2 binding has a right-shifted distribution of RG (larger radii) than the unbound Epsin ensemble. In contrast, the ensemble of Eps15 IDR conformations has comparable RG distribution between AP2-bound and unbound. We speculate that AP2 triggers the Epsin IDR to function through binding-induced-expansion, which could increase steric pressure and membrane bending during CME.


N Suhas Jagannathan, Christopher W V Hogue, Lisa Tucker-Kellogg. De novo ensemble modeling suggests that AP2-binding to disordered regions can increase steric volume of Epsin but not Eps15. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing. 2020;25:183-194

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 31797596

View Full Text