Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Neuron and glia death after axon transection is regulated by various signaling proteins. Protein p53 is a key regulator of diverse cell functions including stress response, DNA repair, proliferation, and apoptosis. We showed that p53 was overexpressed in crayfish ganglia after bilateral axotomy. In the isolated crayfish stretch receptor, a simple natural neuroglial preparation, which consists of a single mechanoreceptor neuron (MRN) enveloped by glial cells, p53 regulated axotomy-induced death of glial cells remote from the axon transection site. In MRN, p53 immunofluorescence was highest in the nucleolus and in the narrow cytoplasmic ring around the nucleus; its levels in the nucleus and cytoplasm were lower. After axotomy, p53 accumulated in the neuronal perikaryon. Its immunofluorescence also increased in the neuronal and glial nuclei. However, p53 immunofluorescence in the most of neuronal nucleoli disappeared. Axotomy-induced apoptosis of remote glial cells increased in the presence of p53 activators WR-1065 and nutlin-3 but reduced by pifithrin-α that inhibits transcriptional activity of p53. Pifithrin-μ that inhibits p53 effect on mitochondria increased axotomy-induced apoptosis of remote glial cells but reduced their necrosis. Therefore, axotomy-induced apoptosis of remote glial cells was associated with p53 effect on transcription processes, whereas glial necrosis was rather associated with transcription-independent p53 effect on mitochondria. Apparently, the fate of remote glial cells in the axotomized crayfish stretch receptor is determined by the balance between different modalities of p53 activity.

Citation

Stanislav Rodkin, Andrey Khaitin, Maria Pitinova, Valentina Dzreyan, Valeria Guzenko, Mikhail Rudkovskii, Svetlana Sharifulina, Anatoly Uzdensky. The Localization of p53 in the Crayfish Mechanoreceptor Neurons and Its Role in Axotomy-Induced Death of Satellite Glial Cells Remote from the Axon Transection Site. Journal of molecular neuroscience : MN. 2020 Apr;70(4):532-541

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31823284

View Full Text