Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

At present, developing therapeutic strategies to improve wound healing in individuals with diabetes remains challenging. Exosomes represent a promising nanomaterial from which microRNAs (miRNAs) can be isolated. These miRNAs have the potential to exert therapeutic effects, and thus, determining the potential therapeutic contributions of specific miRNAs circulating in exosomes is of great importance. In the present study, circulating exosomal miRNAs are identified in diabetic patients and assessed for their roles in the context of diabetic wound healing. A significant upregulation of miR-20b-5p is observed in exosomes isolated from patients with type 2 diabetes mellitus (T2DM), and this miRNA is able to suppress human umbilical vein endothelial cell angiogenesis via regulation of Wnt9b/β-catenin signaling. It is found that the application of either miR-20b-5p or diabetic exosomes to wound sites is sufficient to slow wound healing and angiogenesis. In diabetic mice, it is found that knocking out miR-20b-5p significantly enhances wound healing and promotes wound angiogenesis. Together, these findings thus provide strong evidence that miR-20b-5p is highly enriched in exosomes from patients with T2DM and can be transferred to cells of the vascular endothelium, where it targets Wnt9b signaling to negatively regulate cell functionality and angiogenesis. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Citation

Yuan Xiong, Lang Chen, Chenchen Yan, Wu Zhou, Yori Endo, Jing Liu, Liangcong Hu, Yiqiang Hu, Bobin Mi, Guohui Liu. Circulating Exosomal miR-20b-5p Inhibition Restores Wnt9b Signaling and Reverses Diabetes-Associated Impaired Wound Healing. Small (Weinheim an der Bergstrasse, Germany). 2020 Jan;16(3):e1904044

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31867895

View Full Text