Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

NEDD8 activating enzyme (NAE) plays a critical role in various cellular functions in carcinomas. The selective inhibition of NAE could mediate the rate of ubiquitination and the subsequent degradation of proteins associated with cancer so as to achieve the purpose of treatment. In this article, we decided to study the synthesis and screening of 4-amino substituted 2H-chromen-2-one derivatives against cancer cell lines, specifically the human pancreatic cancer cell line BxPC-3. After synthesis of twenty targeted compounds, we evaluated their anti-proliferative activity against six cancer cell lines, cytotoxicity against three normal cell lines through MTT assay, and hemolysis to screen out the candidate compound, which was further conducted drug-like physical property measurement, target confirmation by enzyme-based experiment, cell apoptosis, and synergistic effect research. Starting from intermediates 4 and 5, several new 4-amino substituted 2H-chromen-2-one derivatives (9-28) were synthesized and evaluated for their cell activities using six cancer cell lines. We performed tests of cytotoxicity, hemolysis, ATP-dependent NAE inhibition in the enzyme- based system, apoptosis, and synergistic effect in BxPC-3 cells against the best candidate compound 21. Based on these results, we found that compound 21 inhibited NAE activity in an ATP-dependent manner in the enzyme-based system, induced apoptosis in BxPC-3 cells, and synergized with bortezomib on BxPC-3 cell growth inhibition. Additionally, it had low toxicity with reasonable Log P-value and water solubility. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.

Citation

Lijuan Zhu, Peng Lu, Lei Gong, Cheng Lu, Mengli Li, Yubin Wang. Design, Synthesis, and Biological Evaluation of 4-amino Substituted 2Hchromen- 2-one Derivatives as an NEDD8 Activating Enzyme Inhibitor in Pancreatic Cancer Cells. Medicinal chemistry (Shariqah (United Arab Emirates)). 2020;16(7):969-983

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31880252

View Full Text