Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Both inhibiting ascending nociceptive transmission and activating descending inhibition are involved in the opioid analgesic effect. The spinal dorsal horn is a critical site for modulating nociceptive transmission by descending pathways elicited by opioids in the brain. μ-Opioid receptors (MORs, encoded by Oprm1) are highly expressed in primary sensory neurons and their central terminals in the spinal cord. In the present study, we tested the hypothesis that MORs expressed in primary sensory neurons contribute to the descending inhibition and supraspinal analgesic effect induced by centrally administered opioids. We generated Oprm1 conditional knockout (Oprm1-cKO) mice by crossing AdvillinCre/+ mice with Oprm1flox/flox mice. Immunocytochemical labeling in Oprm1-cKO mice showed that MORs are completely ablated from primary sensory neurons and are profoundly reduced in the superficial spinal dorsal horn. Intracerebroventricular injection of morphine or fentanyl produced a potent analgesic effect in wild-type mice, but such an effect was significantly attenuated in Oprm1-cKO mice. Furthermore, the analgesic effect produced by morphine or fentanyl microinjected into the periaqueductal gray was significantly greater in wild-type mice than in Oprm1-cKO mice. Blocking MORs at the spinal cord level diminished the analgesic effect of morphine and fentanyl microinjected into the periaqueductal gray in both groups of mice. Our findings indicate that MORs expressed at primary afferent terminals in the spinal cord contribute to the supraspinal opioid analgesic effect. These presynaptic MORs in the spinal cord may serve as an interface between ascending inhibition and descending modulation that are involved in opioid analgesia. Copyright © 2019 Elsevier B.V. All rights reserved.


Jie Sun, Shao-Rui Chen, Hui-Lin Pan. μ-Opioid receptors in primary sensory neurons are involved in supraspinal opioid analgesia. Brain research. 2020 Feb 15;1729:146623

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 31881186

View Full Text