Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Kaempferia parviflora (KP) is an herbal medicine for enhancement of physical fitness and male sexual function improvement with low oral absorption of the main active compounds, methoxyflavones. The purpose of this study is to optimize the preparation of nanosuspensions of KP extract for enhancing intestinal absorption using antisolvent precipitation technique which is an accessible nanomanufacturing methodology in the small industrial factory. Nanosuspensions were prepared using various types and concentrations of stabilizers. Then, the dry powder of KP nanosuspension was produced by spray drying. Its dissolution rate was determined using USP dissolution apparatus II. The rat everted intestinal sac was tested to confirm the improvement of intestinal absorption of KP nanosuspension. The result showed that 3% sodium lauryl sulfate (SLS) was the optimal condition for covering the nano-size of KP nanosuspension. KP nanosuspensions had particle sizes ranging from 100 to 300 nm with narrow size distribution (PDI < 0.60) and zeta potential at - 58 to - 70 mV. These characteristics were stable at 4°C and 25°C/60%RH for 1-month storage. Its methoxyflavones content also unchanged at 4°C and 25°C/60%RH for 1-month storage. KP nanosuspension released > 80% of the methoxyflavones within 30 min both in 0.1 N HCl and 0.01 M phosphate buffer solution (pH 6.8). Moreover, the developed nanosuspension dramatically improved the rat intestinal absorption about 10-fold. Therefore, the KP nanosuspension was successfully prepared. It has relatively high stability, fast dissolution rate, and high intestinal absorption.

Citation

Catheleeya Mekjaruskul, Bungorn Sripanidkulchai. Kaempferia parviflora Nanosuspension Formulation for Scalability and Improvement of Dissolution Profiles and Intestinal Absorption. AAPS PharmSciTech. 2020 Jan 03;21(2):52

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31900735

View Full Text