Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Immunotherapy targeting leukemia-associated antigens has shown promising results. Because of the heterogeneity of leukemia, vaccines with a single peptide have elicited only a limited immune response. Targeting several peptides together elicited peptide-specific cytotoxic T lymphocytes (CTLs) in leukemia patients, and this was associated with clinical responses. Thus, the discovery of novel antigens is essential. In the current study, we investigated cyclin E as a novel target for immunotherapy. Cyclin E1 and cyclin E2 were found to be highly expressed in hematologic malignancies, according to reverse transcription polymerase chain reaction and western blot analysis. We identified two HLA-A*0201 binding nonameric peptides, CCNE1M from cyclin E1 and CCNE2L from cyclin E2, which both elicited the peptide-specific CTLs. The peptide-specific CTLs specifically kill leukemia cells. Furthermore, CCNE1M and CCNE2L CTLs were increased in leukemia patients who underwent allogeneic hematopoietic stem cell transplantation, and this was associated with desired clinical outcomes. Our findings suggest that cyclin E1 and cyclin E2 are potential targets for immunotherapy in leukemia.

Citation

Hong He, Yukio Kondo, Ken Ishiyama, Gheath Alatrash, Sijie Lu, Kathryn Cox, Na Qiao, Karen Clise-Dwyer, Lisa St John, Pariya Sukhumalchandra, Qing Ma, Jeffrey J Molldrem. Two unique HLA-A*0201 restricted peptides derived from cyclin E as immunotherapeutic targets in leukemia. Leukemia. 2020 Jun;34(6):1626-1636

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31908357

View Full Text