Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The present study examined if the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-155/CTLA-4 axis was involved in modifying Th1/Th2 balance, a critical indicator for asthma progression. Altogether 772 asthma patients and 441 healthy controls were recruited, and their blood samples were collected to determine expressional levels of MALAT1, miR-155, CTLA-4, T-bet, GATA3, Th1-type cytokines and Th2-type cytokines. The CD4+ T cells were administered with pcDNA3.1-MALAT1, si-MALAT1, miR-155 mimic and miR-155 inhibitor to assess their effects on cytokine release. The luciferase reporter gene assay was also adopted to evaluate the sponging relationships between MALAT1 and miR-155, as well as between miR-155 and CTLA-4. Over-expressed MALAT1 and under-expressed miR-155 were more frequently detected among asthma patients who showed traits of reduced forced expiratory failure volume in 1 s (FEV1), FEV1/forced vital capacity (FVC) and FEV1% of predicted (P<0.05). Moreover, MALAT1 expression was negatively expressed with the Th1/Th2 and T-bet/GATA3 ratios, yet miR-155 expression displayed a positively correlation with the ratios (P<0.05). Additionally, the IFN-γ, IL-2 and T-bet levels were reduced under the influence of pcDNA3.1-MALAT1 and miR-155 inhibitor, while levels of IL-4, IL-10 and GATA3 were raised under identical settings (P<0.05). Furthermore, MALAT1 constrained expression of miR-155 within CD4+ T cells by sponging it, and CTLA-4 could interfere with the effects of MALAT1 and miR-155 on Th1/Th2 balance and T-bet/Gata3 ratio (P<0.05). MALAT1 sponging miR-155 was involved with regulation of Th1/Th2 balance within CD4+ T cells, which might aid to develop therapies for amelioration of asthmatic inflammation. © 2020 The Author(s).

Citation

Zhijun Liang, Fenglian Tang. The potency of lncRNA MALAT1/miR-155/CTLA4 axis in altering Th1/Th2 balance of asthma. Bioscience reports. 2020 Feb 28;40(2)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31909418

View Full Text