Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Absorption of excess excitation energy induces overproduction of singlet oxygen (1O2) in plants. The major sources of singlet oxygen production are chlorophyll and its intermediates located in the chloroplast. Over-accumulation of the chlorophyll biosynthetic intermediate protochlorophyllide by the exogenous application of 5-aminolevulinic acid (ALA), the precursor of tetrapyrrole, induced singlet oxygen production in the plastidic membranes. Over-expression of protochlorophyllide oxidoreductase C (PORC) in Arabidopsis thaliana resulted in efficient light-induced photo-transformation of protochlorophyllide to chlorophyllide that limited the accumulation of protochlorophyllide. Consequently, the 1O2 generation decreased in the PORC overexpressors (PORCx) and their cell death was minimal. Conversely, porC-2 over-accumulated protochlorophyllide in response to ALA treatment and generated higher amounts of 1O2 in light and had highest cell death as monitored by Evans blue staining. The protoplasts isolated from PORCx plants, when treated with ALA, generated minimal amounts of 1O2 as revealed by singlet oxygen sensor green (SOSG) fluorescence emission from chloroplasts. Conversely, the protoplasts of porC-2 mutants under identical conditions generated the maximum SOSG fluorescence in their chloroplasts and cytosol surrounding the chloroplasts most likely due to the leakage from the organelle. The membrane blebbing, a hallmark of programmed cell death, was clearly visible in WT and porC-2 protoplasts. Similarly, the nick end labelling (TUNEL) assay revealed nicks in the DNA. The TUNEL-positive nuclei after 30 min of light exposure were highest in porC-2 and lowest in PORCx protoplasts. The results demonstrate that higher amounts of singlet oxygen produced in the chloroplasts play an important role in programmed cell death.

Citation

Vivek Ambastha, Garima Chauhan, Budhi Sagar Tiwari, Baishnab C Tripathy. Execution of programmed cell death by singlet oxygen generated inside the chloroplasts of Arabidopsis thaliana. Protoplasma. 2020 May;257(3):841-851

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31909436

View Full Text