Correlation Engine 2.0
Clear Search sequence regions


  • 1 protein (2)
  • azoospermia (2)
  • Dazl (1)
  • gametogenesis (1)
  • gene (2)
  • germ cell (9)
  • meiosis (2)
  • mice (2)
  • mrna (2)
  • rna (2)
  • signal (2)
  • sperm (1)
  • Stra8 (2)
  • subunit (6)
  • TAF (1)
  • Taf4b (4)
  • Taf7l (1)
  • Taf9b (1)
  • TATA (2)
  • TFIID (6)
  • Sizes of these terms reflect their relevance to your search.

    Germ cells undergo many developmental transitions before ultimately becoming either eggs or sperm, and during embryonic development these transitions include epigenetic reprogramming, quiescence, and meiosis. To begin understanding the transcriptional regulation underlying these complex processes, we examined the spatial and temporal expression of TAF4b, a variant TFIID subunit required for fertility, during embryonic germ cell development. By analyzing published datasets and using our own experimental system to validate these expression studies, we determined that both Taf4b mRNA and protein are highly germ cell-enriched and that Taf4b mRNA levels dramatically increase from embryonic day 12.5-18.5. Surprisingly, additional mRNAs encoding other TFIID subunits are coordinately upregulated through this time course, including Taf7l and Taf9b. The expression of several of these germ cell-enriched TFIID genes is dependent upon Dazl and/or Stra8, known regulators of germ cell development and meiosis. Together, these data suggest that germ cells employ a highly specialized and dynamic form of TFIID to drive the transcriptional programs that underlie mammalian germ cell development.

    Citation

    Megan A Gura, Maria M Mikedis, Kimberly A Seymour, Dirk G de Rooij, David C Page, Richard N Freiman. Dynamic and regulated TAF gene expression during mouse embryonic germ cell development. PLoS genetics. 2020 Jan;16(1):e1008515

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 31914128

    View Full Text