Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

A novel adsorbent derived from banyan aerial roots was prepared via modification and employed to aqueous gentian violet (GV) and rhodamine B (RhB) removal. The surface morphology and physicochemical properties of modified banyan aerial roots (MBARs) were investigated by SEM, EDS, N2 adsorption/desorption, zeta potential, XRD, and FT-IR characterization experiments. Adsorption factors were tested, and the optimal conditions for GV and RhB removal were pH of 6 and 3, doses of 0.02 g and 0.03 g, and reaction time of 540 min. Adsorption isotherm simulation illustrated that theoretical monolayer adsorption capacities of GV and RhB were 456.64 mg/g and 115.23 mg/g, respectively. Kinetics data was assessed with pseudo-first-order and pseudo-second-order models, and the latter described GV and RhB adsorption better at 288 K, 298 K, 308 K, and 318 K. Thermodynamic analysis indicated that GV and RhB adsorption processes were endothermic and spontaneous. From the research results, it could be inferred that GV adsorption was mainly dominated by electrostatic interaction, while RhB adsorption might be primarily attributed to electrostatic interaction and hydrogen bonding. The study based on full utilization of waste plant fibers facilitates recycling of biomass resources, and due to simplicity, safety, and eco-friendliness of the preparation, as well as low cost and high efficiency of the application, MBARs may be potential absorbents for the treatment of dyestuff wastewater.

Citation

Huimin Fan, Yongwen Ma, Jinquan Wan, Yan Wang. Removal of gentian violet and rhodamine B using banyan aerial roots after modification and mechanism studies of differential adsorption behaviors. Environmental science and pollution research international. 2020 Mar;27(9):9152-9166

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31916156

View Full Text