Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Recruitment of leukocytes from blood vessels to inflamed zones is guided by biochemical and mechanical stimuli, with the mechanisms only partially deciphered. Here, we studied the guidance by the flow of primary human effector T lymphocytes crawling on substrates coated with ligands of integrins lymphocyte function-associated antigen 1 (LFA-1) (αLβ2) and very late antigen 4 (VLA-4) (α4β1). We reveal that cells segregate in two populations of opposite orientation for combined adhesion and show that decisions of orientation rely on a bistable mechanism between LFA-1-mediated upstream and VLA-4-mediated downstream phenotypes. At the molecular level, bistability results from a differential front-rear polarization of both integrin affinities, combined with an inhibiting cross talk of LFA-1 toward VLA-4. At the cellular level, direction is determined by the passive, flow-mediated orientation of the nonadherent cell parts, the rear uropod for upstream migration, and the front lamellipod for downstream migration. This chain of logical events provides a comprehensive mechanism of guiding, from stimuli to cell orientation. Copyright © 2019 Biophysical Society. Published by Elsevier Inc. All rights reserved.

Citation

Alexander Hornung, Thomas Sbarrato, Nicolas Garcia-Seyda, Laurene Aoun, Xuan Luo, Martine Biarnes-Pelicot, Olivier Theodoly, Marie-Pierre Valignat. A Bistable Mechanism Mediated by Integrins Controls Mechanotaxis of Leukocytes. Biophysical journal. 2020 Feb 04;118(3):565-577

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31928762

View Full Text