Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Chlorophylls (Chl) play pivotal roles in energy capture, transfer and charge separation in photosynthesis. Among Chls functioning in oxygenic photosynthesis, Chl f is the most red-shifted type first found in a cyanobacterium Halomicronema hongdechloris. The location and function of Chl f in photosystems are not clear. Here we analyzed the high-resolution structures of photosystem I (PSI) core from H. hongdechloris grown under white or far-red light by cryo-electron microscopy. The structure showed that, far-red PSI binds 83 Chl a and 7 Chl f, and Chl f are associated at the periphery of PSI but not in the electron transfer chain. The appearance of Chl f is well correlated with the expression of PSI genes induced under far-red light. These results indicate that Chl f functions to harvest the far-red light and enhance uphill energy transfer, and changes in the gene sequences are essential for the binding of Chl f.

Citation

Koji Kato, Toshiyuki Shinoda, Ryo Nagao, Seiji Akimoto, Takehiro Suzuki, Naoshi Dohmae, Min Chen, Suleyman I Allakhverdiev, Jian-Ren Shen, Fusamichi Akita, Naoyuki Miyazaki, Tatsuya Tomo. Structural basis for the adaptation and function of chlorophyll f in photosystem I. Nature communications. 2020 Jan 13;11(1):238

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31932639

View Full Text