Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

To investigate the carbapenem resistance mechanism of a carbapenem-resistant clinical Pseudomonas aeruginosa isolate. A carbapenem-resistant P. aeruginosa isolate was recovered from a tracheal swab from a patient of a general ward in central Germany. Various phenotypic tests confirmed production of a carbapenemase that could not be identified further by PCR. A novel bla gene was identified by WGS and its carbapenemase activity was verified by heterologous expression in an Escherichia coli cloning strain. Kinetic parameters of the novel β-lactamase were determined by spectrophotometric measurements using purified enzyme. WGS confirmed the presence of a novel class A carbapenemase. The novel bla gene was named GPC-1 (GPC standing for German Pseudomonas Carbapenemase) and exhibited 77% amino acid identity to BKC-1. WGS also showed that blaGPC-1 was located on the chromosome surrounded by multiple ISs as part of a 26 kb genetic island. Heterologous expression of GPC-1 in E. coli TOP10 led to increased MICs of penicillins, oxyimino-cephalosporins, aztreonam and imipenem, but not of meropenem or ertapenem. Spectrophotometric measurements supported the MIC studies, but detected a slight hydrolysis of ertapenem and meropenem when using high concentrations of purified enzyme. The biochemical characterization of GPC-1 emphasizes the ongoing emergence of novel carbapenemases. Strains expressing a weak carbapenemase like GPC-1 might go unrecognized by routine diagnostics due to low MICs for the bacterial strains producing such enzymes. © The Author(s) 2020. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Citation

Jennifer Schauer, Sören G Gatermann, Daniel Hoffmann, Lars Hupfeld, Niels Pfennigwerth. GPC-1, a novel class A carbapenemase detected in a clinical Pseudomonas aeruginosa isolate. The Journal of antimicrobial chemotherapy. 2020 Apr 01;75(4):911-916

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31960033

View Full Text