Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Some chloroplast proteins are known to serve as messengers to transmit retrograde signals from chloroplasts to the nuclei in response to environmental stresses. However, whether particular chloroplast proteins respond to drought stress and serve as messengers for retrograde signal transduction are unclear. Here, we used isobaric tags for relative and absolute quantitation (iTRAQ) to monitor the proteomic changes in tobacco (Nicotiana benthamiana) treated with drought stress/re-watering. We identified 3936 and 1087 differentially accumulated total leaf and chloroplast proteins, respectively, which were grouped into 16 categories. Among these, one particular category of proteins, that includes carbonic anhydrase 1 (CA1), exhibited a great decline in chloroplasts, but a remarkable increase in leaves under drought stress. The subcellular localizations of CA1 proteins from moss (Physcomitrella patens), Arabidopsis thaliana and rice (Oryza sativa) in P. patens protoplasts consistently showed that CA1 proteins gradually diminished within chloroplasts but increasingly accumulated in the cytosol under osmotic stress treatment, suggesting that they could be translocated from chloroplasts to the cytosol and act as a signal messenger from the chloroplast. Our results thus highlight the potential importance of chloroplast proteins in retrograde signaling pathways and provide a set of candidate proteins for further research.

Citation

Ping Li, Haoju Liu, Hong Yang, Xiaojun Pu, Chuanhong Li, Heqiang Huo, Zhaohui Chu, Yuxiao Chang, Yongjun Lin, Li Liu. Translocation of Drought-Responsive Proteins from the Chloroplasts. Cells. 2020 Jan 20;9(1)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 31968705

View Full Text