Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Millions of patients with valvular heart disease have benefitted from heart valve replacement since the procedure was first introduced in the 1960s; however, there are still many patients who get early structural valve deterioration (SVD) of their bioprosthetic heart valves (BHV). BHV are porcine, bovine, or equine tissues that have been glutaraldehyde fixed to preserve the tissue and presumably make the tissue immunologically inert. These glutaraldehyde-fixed BHV with anti-calcification treatments last long periods of time in older adults but develop early SVD in younger patients. The consensus at present is that the early SVD in younger patients is due to more "wear and tear" of the valves and higher calcium turnover in younger patients. However, as younger patients likely have a more robust immune system than older adults, there is a new hypothesis that BHV xenografts may undergo xenograft rejection, and this may contribute to the early SVD seen in younger patients.At present, the technology to noninvasively study in vivo whether an implanted BHV in a human patient is undergoing rejection is not available. Thus, a small animal discordant xenotransplant model in young rodents (to match the young patient getting a pig/bovine/equine BHV) was developed to study whether the hypothesis that glutaraldehyde-fixed BHV undergo xenograft rejection had any merit. In this chapter, we describe our model and its merits and the results of our investigations. Our work provides clear evidence of xenograft rejection in glutaraldehyde-fixed tissue, and our small animal model offers an opportunity to study this process in detail.

Citation

Rizwan A Manji, Jacqueline S Manji. Studying Xenograft Rejection of Bioprosthetic Heart Valves. Methods in molecular biology (Clifton, N.J.). 2020;2110:227-243

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32002912

View Full Text