Correlation Engine 2.0
Clear Search sequence regions


  • cellular (1)
  • dehydrogenases (1)
  • DHTKD1 (8)
  • homeostasis (1)
  • humans (1)
  • low (1)
  • niacin (2)
  • OGDH (8)
  • phosphonates (2)
  • protein human (1)
  • protein rat (1)
  • rats (1)
  • rna (1)
  • sugars (3)
  • Sizes of these terms reflect their relevance to your search.

    The biological significance of the DHTKD1-encoded 2-oxoadipate dehydrogenase (OADH) remains obscure due to its catalytic redundancy with the ubiquitous OGDH-encoded 2-oxoglutarate dehydrogenase (OGDH). In this work, metabolic contributions of OADH and OGDH are discriminated by exposure of cells/tissues with different DHTKD1 expression to the synthesized phosphonate analogues of homologous 2-oxodicarboxylates. The saccharopine pathway intermediates and phosphorylated sugars are abundant when cellular expressions of DHTKD1 and OGDH are comparable, while nicotinate and non-phosphorylated sugars are when DHTKD1 expression is order(s) of magnitude lower than that of OGDH. Using succinyl, glutaryl and adipoyl phosphonates on the enzyme preparations from tissues with varied DHTKD1 expression reveals the contributions of OADH and OGDH to oxidation of 2-oxoadipate and 2-oxoglutarate in vitro. In the phosphonates-treated cells with the high and low DHTKD1 expression, adipate or glutarate, correspondingly, are the most affected metabolites. The marker of fatty acid β-oxidation, adipate, is mostly decreased by the shorter, OGDH-preferring, phosphonate, in agreement with the known OGDH dependence of β-oxidation. The longest, OADH-preferring, phosphonate mostly affects the glutarate level. Coupled decreases in sugars and nicotinate upon the OADH inhibition link the perturbation in glucose homeostasis, known in OADH mutants, to the nicotinate-dependent NAD metabolism.

    Citation

    Artem V Artiukhov, Aneta Grabarska, Ewelina Gumbarewicz, Vasily A Aleshin, Thilo Kähne, Toshihiro Obata, Alexey V Kazantsev, Nikolay V Lukashev, Andrzej Stepulak, Alisdair R Fernie, Victoria I Bunik. Synthetic analogues of 2-oxo acids discriminate metabolic contribution of the 2-oxoglutarate and 2-oxoadipate dehydrogenases in mammalian cells and tissues. Scientific reports. 2020 Feb 05;10(1):1886

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32024885

    View Full Text