Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Hypoxic stress is intimately connected with tumor progression, with hypoxia-inducible factor-1α (HIF-1α) being a critical regulator in this process. HIF-1α is stabilized in response to hypoxia, which is required for the induction of gene transcriptions important for hypoxic adaptation. Bclaf1 is a multifunctional protein involved in tumorigenesis, however, its role in this process is not well characterized. Here we report Bclaf1 is a direct transcriptional target of HIF-1 and upregulated in multiple cell lines during hypoxia. Importantly, we found Bclaf1 is involved in the stabilization of HIF-1α during long-term hypoxic treatments. Compared with the control cells, the protein level and stability of HIF-1α in Bclaf1 knockdown or knockout cells is greatly compromised after long-term hypoxic treatments, concomitant with the impaired inductions of HIF-1 target gene transcription. Bclaf1 knockout HeLa cells exhibit a reduced tumor growth in mice xenografts, in which the expressions of HIF-1α and its target genes are also decreased. Bclaf1 binds to HIF-1α in the nucleus, and this interaction is required for Bclaf1 to stabilize HIF-1α in hypoxic condition. These results uncover a positive feedback loop, HIF-1-Bclaf1, that sustains HIF-1 activity during long-term hypoxic conditions by binding to and protecting HIF-1α from degradation, and suggest that Bclaf1 may promote tumor progression by enhancing HIF-1α stability.


Anwen Shao, Yue Lang, Mengdong Wang, Chao Qin, Yu Kuang, Yide Mei, Degui Lin, Shuo Zhang, Jun Tang. Bclaf1 is a direct target of HIF-1 and critically regulates the stability of HIF-1α under hypoxia. Oncogene. 2020 Mar;39(13):2807-2818

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32029898

View Full Text