Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Organic cation transporters (OCTs) are poly-specific carriers for endogenous and exogenous cationic compounds. These are widely distributed in the nervous system and mediate neuronal activities. As antineoplastic cationic drugs accumulate in the dorsal root ganglion (DRG), OCT function has been studied mainly in cultured DRG neurons. However, the histological distribution of OCTs in the DRG is unclear. This study investigated the localization of OCT2 (a member of OCTs) in mouse DRG neurons and determined their histochemical properties. OCT2 expression was found in about 20% of DRG neurons, which were small to medium size. OCT2-expressing neurons were labeled with markers for peptidergic nociceptive (substance P or calcitonin gene-related peptide) and tactile/proprioceptive (neurofilament 200 or tropomyosin receptor kinase B or C) neurons. OCT2 was also expressed in cholinergic DRG neurons identified by choline acetyltransferase promoter-derived Cre expression. In the spinal dorsal horn, OCT2 was distributed in superficial to deep laminae. OCT2 immunoreactivity was punctate in appearance and localized in the nerve terminals of sensory afferents with labeling of neurochemical markers. Our findings suggest that OCT2 as a low-affinity, high-capacity carrier may take up substrates including cationic neurotransmitters and drugs from the extracellular space around cell bodies in DRG neurons.

Citation

Toshiyasu Matsui, Takahiro Nakata, Masamichi Kurohmaru, Yasushi Kobayashi. Neurochemical characterization of mouse dorsal root ganglion neurons expressing organic cation transporter 2. Neuroreport. 2020 Feb 05;31(3):274-280

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32032285

View Full Text