Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Preeclampsia (PE) is an excessive systemic inflammation response with dysfunction of endothelial. As a stress protein, heat shock protein 70 (HSP70) plays a pivotal role in protecting cells against apoptosis, oxidative damage and genetic damage. In humans, three genes encode members of the HSP70 class: HSPA1A, HSPA1B and HSPA1L. Our study was to investigate the association between genetic variations of HSPA1L and the susceptibility for PE in Chinese Han population. The polymorphisms of rs2227956, rs1043618 and rs1061581 in HSPA1L were genotyped by TaqMan allelic discrimination real time polymerase chain reaction (PCR) in 929 PE patients and 1024 healthy pregnant women. Statistic difference of the genotypic and allelic frequencies were found in HSPA1L rs1061581 between PE patients and controls (χ2 = 29.863, P < 0.001 by genotype; χ2 = 27.298, P < 0.001, OR = 1.874, 95%CI 1.476-2.379 by allele) and HSPA1L rs1061581 A alleles occurred more frequently in PE patients compared with healthy controls (PE vs. controls 10.28% vs. 5.76%). Furthermore, we divided the PE cases into early-onset/late-onset PE and mild/severe PE subgroups and found statistical differences in genotypic and allelic frequencies of the HSPA1L rs1061581 between early-onset PE, late-onset PE, mild PE, severe PE and controls, respectively. Moreover, HSPA1L rs1061581 A alleles were more frequent in early-onset PE, late-onset PE, mild PE and severe PE than controls respectively. Therefore, we concluded that HSPA1L rs1061581 polymorphism is associated with the risk of PE in Han Chinese women and A alleles may play a role in the susceptibility for PE. © 2020 The Author(s).

Citation

Jinbao Zong, Yan Lin, Qingwu Tian, Xin Zhao, Kaiqiu Chu, Bing Jiang, Shengjun Li, Guirong Sun, Shiguo Liu. HSPA1L rs1061581 polymorphism is associated with the risk of preeclampsia in Han Chinese women. Bioscience reports. 2020 Feb 28;40(2)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32039449

View Full Text