Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The increasing demand for triacylglycerol (TAG) enriching polyunsaturated fatty acids (PUFAs) has led to a surge of interest in microalgal TAG metabolism. Polar membrane lipids serve as the desaturation carrier for PUFA, and the functional group of PUFA can be incorporated into TAG. Monogalactoglycerolipid has been found to provide the de novo synthesized oleate acyl group or the nascent polyunsaturated diacylglycerol backbone for TAG biosynthesis in the model green alga, Chlamydomonas reinhardtii. However, whether other membrane lipids take part in the formation of PUFA-attached TAG has not been clearly discovered. A time course study of glycerolipidomics in the starchless mutant of C. reinhardtii, BAFJ5, which hyper-accumulates TAG, revealed that digalactosyldiacylglycerol (DGDG) and diacylglycerol-N,N,N-trimethylhomoserine (DGTS) turned into the main components of membrane lipids, accounting for 62% of the total polar lipids, under nitrogen deprivation combined with high light conditions. In addition, the membrane lipid molecules DGDG 18:3n3/16:0 and DGTS 16:0/18:3n6 were presumed to be involved in the consecutive integration of the de novo synthesized linolenates into TAG. Based on the stoichiometry calculation, DGDG and DGTS were demonstrated to provide a major contribution to the accumulation of linolenate-attached TAG. Our study gives insights into the potential PUFA-attached TAG formation pathway mediated by the turnover of de novo synthesized DGDG and DGTS in the starchless mutant of Chlamydomonas. © The Author(s) 2020. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Citation

Miao Yang, Fantao Kong, Xi Xie, Peichun Wu, Yadong Chu, Xupeng Cao, Song Xue. Galactolipid DGDG and Betaine Lipid DGTS Direct De Novo Synthesized Linolenate into Triacylglycerol in a Stress-Induced Starchless Mutant of Chlamydomonas reinhardtii. Plant & cell physiology. 2020 Apr 01;61(4):851-862

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32061132

View Full Text