Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In the human skin, it has been well known that several mechanoreceptors uniquely sense external stimuli with specific frequencies and magnitudes. With regard to sensitivity, the output response shows nonlinearity depending on the frequency magnitude of the stimulus. We demonstrate a self-powered proton-driven solid-state somatosensor, which mimics a unique nonlinear response and intensity behavior of human mechanoreceptors. For this, a solid-state sensor is fabricated by combining a piezoelectric film and a proton generation device. The proton injection electrode and the Nafion layer conjugated with sulfonated graphene oxide are used for proton generation and transport. Two types of nonlinear signals from the sensor are similar to the Merkel/Ruffini (low deviation of threshold intensity), and in contrast, the behavior of Pacinian/Meissner (high deviation of threshold intensity) is simultaneously shown. The region of the most responsive frequency is also discriminated according to proton conduction. Moreover, it is asserted that unique signal patterns are obtained from the stimuli of various frequencies, such as respiration, radial artery pulse, and neck vibration, which naturally occur in the human body.

Citation

Kyoung-Yong Chun, Young Jun Son, Seunghwan Seo, Ho Jung Lee, Chang-Soo Han. Nonlinearly Frequency-Adaptive, Self-Powered, Proton-Driven Somatosensor Inspired by a Human Mechanoreceptor. ACS sensors. 2020 Mar 27;5(3):845-852

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32096629

View Full Text