Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Voltage-gated calcium channels (VGCCs) mediate the entry of Ca2+ ions into cells in response to membrane depolarization and play fundamental roles in the nervous system, and the α1 subunits are the main subunits of Ca2+ channels. Caenorhabditis elegans possesses genes encoding α1 subunits; however, very few of these genes have been cloned in plant-parasitic nematodes (PPNs). Ditylenchus destructor is a PPN that has been proposed as a new model for studying the biology and control of PPNs. To understand the structure and function of the VGCCs of this PPN, we first cloned and identified three full-length cDNAs of VGCC α1 subunit genes in D. destructor with the defining structural and conserved features of Cav1 (L-type), Cav2 (non-L-type) and Cav3 (T-type). In situ hybridization assays demonstrated that the Cav1 VGCC α1 subunit gene (DdCα1D) was expressed within body wall muscles. The Cav2 VGCC α1 subunit (DdCα1A) was expressed in the oesophageal gland, vulva and vas deferens of the worm, and the Cav3 VGCC α1 subunit (DdCα1G) was localized to the oesophagus and median bulb. In addition, on the basis of the in vitro knockdown of L-, non-L- and T-type genes via RNAi, these genes were predicted to play a key role in the modulation of locomotion, feeding and reproduction. After the silencing of DdCα1G, the median bulb muscle of D. destructor was obviously contracted, and its feeding and reproduction abilities were significantly inhibited. This study provides insight into the structure and function of VGCC α1 subunits in D. destructor. Copyright © 2020 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

Citation

Shan Ye, Rune Zeng, Jianyu Zhou, Mingwei An, Zhong Ding. Molecular characterization of Ditylenchus destructor voltage-gated calcium channel α1 subunits and analysis of the effect of their knockdown on nematode activity. Biochimie. 2020 Apr - May;171-172:91-102

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32109501

View Full Text