Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In the present study, we report the effects of extracellular medium conductivity on cell response in the context of sub-microsecond range (100 ns-900 ns) electroporation, calcium electroporation and cell size. The effects of 25 ns and microsecond range (100 μs) pulses were also covered. As a model, three different cancer cell lines of various size (C32, MCF-7/DX and MC38/0) were used and the results indicated different size-dependent susceptibility patterns to the treatment. The applied pulsed electric field (PEF) protocols revealed a significant decrease of cell viability when calcium electroporation was used. The dependence of calcium ion transport and finally the anticancer effect on the external medium conductivity was determined. It was shown that small differences in conductivity do not alter viability significantly, however, mostly affect the permeabilization. At the same, MC38/0 cell line was the least susceptible to calcium electroporation, while the C32 line the most. In all cases calcium electroporation was mostly dependent on the sensitivity of cells to electroporation and could not be effectively improved by the increase of CaCl2 concentration from 2 mM to 5 mM. Lastly, sub-microsecond PEF stimulated aquaporin-4 and VDAC1/Porin immunoreactions in all treated cells lines, which indicated that cell water balance is affected, ions exchange is increased and release of mitochondrial products is occurrent.

Citation

Vitalij Novickij, Nina Rembialkowska, Gediminas Staigvila, Julita Kulbacka. Effects of extracellular medium conductivity on cell response in the context of sub-microsecond range calcium electroporation. Scientific reports. 2020 Feb 28;10(1):3718

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32111987

View Full Text