Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Actin cytoskeleton disruption is a promising and intriguing anticancer strategy, but their efficiency is frequently compromised by severe side effects of the actin cytoskeleton-disrupting agents. In this study, we constructed the biocompatible actin cytoskeleton-targeting multivalent supramolecular assemblies that specifically target and disrupt the tumor actin cytoskeleton for cancer therapy. The assemblies were composed of β-cyclodextrin-grafted hyaluronic acid (HACD) and iron oxide magnetic nanoparticles (MNPs) grafted by an actin-binding peptide (ABP) and adamantane (Ada)-modified polylysine. Owing to the multivalent binding between cyclodextrin and Ada, HACD, and peptide-grafted MNPs (MNP-ABP-Ada) could self-assemble to form MNP-ABP-Ada⊂HACD nanofibers in a geomagnetism-dependent manner. Furthermore, the presence of ABP rendered the assemblies to efficiently target the actin cytoskeleton. Interestingly, with the acid of a low-frequency alternating magnetic field (200 Hz), the actin cytoskeleton-targeting nanofibers could induce severe actin disruption, leading to a remarkable cell cycle arrest and drastic cell death of tumor cells both in vitro and in vivo, but showed no obvious toxicity to normal cells. The actin cytoskeleton-targeting/disrupting supramolecular assembly implies an excellent strategy for realizing efficient cancer therapy.

Citation

Qilin Yu, Bing Zhang, Ying-Ming Zhang, Yao-Hua Liu, Yu Liu. Actin Cytoskeleton-Disrupting and Magnetic Field-Responsive Multivalent Supramolecular Assemblies for Efficient Cancer Therapy. ACS applied materials & interfaces. 2020 Mar 25;12(12):13709-13717

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32118400

View Full Text