Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

MicroRNAs (miRNAs) provide context-dependent transcriptional regulation of genes comprising signalling networks throughout the developing organism including morphogenesis of the embryonic neural tube (NT). Using a high-sensitivity, high-coverage microarray analysis platform, miRNA expression in the murine embryonic NT during the critical stages of its formation was examined. Analysis of a number of differentially expressed (DE) miRNAs enabled identification of several gene targets associated with cellular processes essential for normal NT development. Using computational pathway analysis, interactive biologic networks and functional relationships connecting DE miRNAs with their targeted messenger RNAs (mRNAs) were identified. Potential mRNA targets and a key signal transduction pathway governing critical cellular processes indispensable for normal mammalian neurulation were also identified. RNA preparations were also used to hybridize both miRNA arrays and mRNA arrays allowing miRNA-mRNA target analysis using data of DE miRNAs and DE mRNAs - co-expressed in the same developing NT tissue samples. Identification of these miRNA targets provides key insight into the epigenetic regulation of NT development as well as into potential mechanistic underpinning of NT defects. SIGNIFICANCE OF THE STUDY: This study underscores the premise that microRNAs are potential coordinators of normal neural tube (NT) formation, via regulation of the crucial, planar cell polarity pathway. Any alteration in their expression during neurulation would result in abnormal NT development. © 2020 John Wiley & Sons Ltd.


Partha Mukhopadhyay, Robert M Greene, M Michele Pisano. MicroRNA targeting of the non-canonical planar cell polarity pathway in the developing neural tube. Cell biochemistry and function. 2020 Oct;38(7):905-920

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32129905

View Full Text