Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Acute liver failure (ALF) is a severe consequence of abrupt hepatocyte injury and has lethal outcomes. Three toll-like receptor agonists, including polyinosinic-polycytidylic acid (poly(I:C)), lipopolysaccharide (LPS), and cytosine-phosphate-guanine (CpG) DNA, cause acute and severe hepatitis, respectively, in D-galactosamine (D-GalN)-sensitized mice. However, the molecular differences among three ALF models (LPS/D-GalN, poly(I:C)/D-GalN, and CpG DNA/D-GalN), are unclear. Here, tandem mass tag based quantitative proteomic analyses of three ALF mouse models are performed. 52 common differentially expressed proteins (DEPs) are identified, in three ALF groups, compared to the control. Gene ontology analyses show that among the common DEPs, ten proteins are involved in immune system process, and 39 proteins in metabolic process. Among 80,195, and 23 specifically-expressed proteins in poly(I:C)/D-GalN, LPS/D-GalN, and CpG DNA/D-GalN groups, LPS/D-GalN-specific proteins are mostly distributed in the endoplasmic reticulum and more enriched in metabolic pathways, whereas poly (I:C)/D-GalN-specific proteins are mainly in the membrane and CpG DNA/D-GalN-specific proteins are related to the ribosome structural composition. In conclusion, the common and specific DEPs in three ALF mouse models at molecular level are identified; and determined a close-to-complete reference map of mouse liver proteins which will be useful for clinical diagnosis and treatment of liver failure in humans. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Citation

Jun Hao, Tingting Qi, Xiaoying Zhu, Jinjun Chen. Comparative Proteomic Analyses of the Liver in D-Galactosamine-Sensitized Mice Treated with Different Toll-Like Receptor Agonists. Proteomics. 2020 Apr;20(8):e1900393

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 32131144

View Full Text