Correlation Engine 2.0
Clear Search sequence regions


  • antibodies (1)
  • archaea (1)
  • bacteria (1)
  • biogenesis (1)
  • cancer (2)
  • case (2)
  • Cdc9 (1)
  • cdna (1)
  • cellular (1)
  • chloroplast dna (5)
  • chloroplasts (3)
  • chromatin (2)
  • cisplatin (1)
  • cofactor (1)
  • cytoplasm (1)
  • DHX9 (1)
  • dimers (2)
  • dna damage (4)
  • dna fragments (1)
  • dna polymerases (24)
  • dna primers (4)
  • dna repair (1)
  • dna sequences (2)
  • dna topoisomerases (1)
  • Dna2 (1)
  • dyes (1)
  • electrophoresis (4)
  • embryogenesis (1)
  • embryos (1)
  • essential (4)
  • Exo1 (1)
  • factors (6)
  • FEN1 (4)
  • fibroblasts (1)
  • filaments (2)
  • focus (1)
  • g quadruplex (1)
  • gold (2)
  • help (1)
  • homeostasis (1)
  • human (12)
  • human cell (2)
  • humans rnase h1 (1)
  • hybrids (39)
  • hybrids cells (1)
  • hydrogen bond (1)
  • hydrolysis (4)
  • hydroxyurea (1)
  • learn (1)
  • lupus erythematosus (2)
  • mammals (1)
  • MAT1 (1)
  • metal (2)
  • mice (1)
  • minor (2)
  • mismatch repair (1)
  • mrna (2)
  • mutagenesis (2)
  • MutYH (1)
  • neurons (1)
  • nicks dna (2)
  • nucleic acid (1)
  • nucleotides (3)
  • OGG1 (1)
  • okazaki fragments (270)
  • organelles (7)
  • oxygen (1)
  • patients (2)
  • phase (6)
  • phosphate (2)
  • Pif1 (1)
  • plant cells (1)
  • plants (1)
  • pol α (3)
  • pol ε (6)
  • pol θ (4)
  • pol μ (3)
  • POLRMT (1)
  • protocols (1)
  • Rad51 (1)
  • rdna (1)
  • regulates (1)
  • rna (61)
  • rna polymerases (6)
  • rna primers (6)
  • rnase (18)
  • rnase h (12)
  • rnase h1 (21)
  • rnase hii (3)
  • RNaseH2A (1)
  • RNaseH2B (1)
  • RNaseH2C (1)
  • rnh201 (2)
  • Rnh202 (1)
  • Rnh203 (1)
  • RNR (1)
  • segment (1)
  • Sen1 (1)
  • Senataxin (1)
  • signal (4)
  • southern blot (1)
  • strains (3)
  • strand breaks (21)
  • subunit protein (1)
  • sugar (9)
  • sugar phosphate (1)
  • Top1 (3)
  • toxic (2)
  • type i interferon (1)
  • v d (1)
  • yeast (8)
  • Sizes of these terms reflect their relevance to your search.

    In the last decade, it has become evident that RNA is frequently found in DNA. It is now well established that single embedded ribonucleoside monophosphates (rNMPs) are primarily introduced by DNA polymerases and that longer stretches of RNA can anneal to DNA, generating RNA:DNA hybrids. Among them, the most studied are R-loops, peculiar three-stranded nucleic acid structures formed upon the re-hybridization of a transcript to its template DNA. In addition, polyribonucleotide chains are synthesized to allow DNA replication priming, double-strand breaks repair, and may as well result from the direct incorporation of consecutive rNMPs by DNA polymerases. The bright side of RNA into DNA is that it contributes to regulating different physiological functions. The dark side, however, is that persistent RNA compromises genome integrity and genome stability. For these reasons, the characterization of all these structures has been under growing investigation. In this review, we discussed the origin of single and multiple ribonucleotides in the genome and in the DNA of organelles, focusing on situations where the aberrant processing of RNA:DNA hybrids may result in multiple rNMPs embedded in DNA. We concluded by providing an overview of the currently available strategies to study the presence of single and multiple ribonucleotides in DNA in vivo.

    Citation

    Giulia Maria Nava, Lavinia Grasso, Sarah Sertic, Achille Pellicioli, Marco Muzi Falconi, Federico Lazzaro. One, No One, and One Hundred Thousand: The Many Forms of Ribonucleotides in DNA International Journal of Molecular Sciences. 2020 Mar 02;21(5)


    PMID: 32131532

    View Full Text