Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Exploring efficient and robust electrochemiluminescence (ECL) performance of liposoluble porphyrins in aqueous phase for analytical purposes especially for important biological targets is still very challenging. In this work, a novel depolymerization-induced electrochemiluminescence (DIECL) of porphyrin and β-cyclodextrin (β-CD) self-assembly through a coreactant route was discovered. Among the studied meso-tetrasubstituted porphyrins, self-assembly of 5,10,15,20-tetrakis(4-hydroxyphenyl) porphyrin (THPP) and β-CD (THPP@β-CD) exhibits the best DIECL behavior with high efficiency (21.8%) as well as good reproducibility and stability. A mechanistic study suggests that the facile complexation of porphyrins with amphiphilic β-CD via hydrogen bonding interaction greatly improves the water insolubility and the aggregation-caused deficient ECL of liposoluble porphyrins in aqueous solution. Furthermore, because of the strong hydrogen bonding between the hydroxyl groups on THPP@β-CD and a highly electronegative substrate, such THPP@β-CD is found to serve as an efficient luminophore for recognition of most electronegative fluoride (F-) in the aqueous phase with high sensitivity and selectivity, together with a low limit of detection (0.74 μΜ). The simplicity of this THPP@β-CD and its unique DIECL property in current work provides a new guide for the ECL applications of liposoluble porphyrins in aqueous phase.


Yanxia Wu, Zhengang Han, Liping Wei, Heshui Sun, Tieying Wang, Jing Chen, Ruizhong Zhang, Xiaoquan Lu. Depolymerization-Induced Electrochemiluminescence of Insoluble Porphyrin in Aqueous Phase. Analytical chemistry. 2020 Apr 07;92(7):5464-5472

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 32141290

View Full Text