Correlation Engine 2.0
Clear Search sequence regions


  • ATG8 (1)
  • Cdk8 (2)
  • cell death (4)
  • cell growth (1)
  • cellular homeostasis (1)
  • CNC1 (1)
  • cyclin (3)
  • Cyclin C (10)
  • dependent (3)
  • family (2)
  • gene (2)
  • gene fungal (1)
  • hydrogen (2)
  • nitrogen (5)
  • nutrient (1)
  • organelle (1)
  • represses (2)
  • rna (2)
  • rna polymerase (1)
  • sirolimus (2)
  • ubiquitin (5)
  • yeast (1)
  • Sizes of these terms reflect their relevance to your search.

    Environmental stress elicits well-orchestrated programs that either restore cellular homeostasis or induce cell death depending on the insult. Nutrient starvation triggers the autophagic pathway that requires the induction of several Autophagy (ATG) genes. Cyclin C-cyclin-dependent kinase (Cdk8) is a component of the RNA polymerase II Mediator complex that predominantly represses the transcription of stress-responsive genes in yeast. To relieve this repression following oxidative stress, cyclin C translocates to the mitochondria where it induces organelle fragmentation and promotes cell death prior to its destruction by the ubiquitin-proteasome system (UPS). Here we report that cyclin C-Cdk8, together with the Ume6-Rpd3 histone deacetylase complex, represses the essential autophagy gene ATG8. Similar to oxidative stress, cyclin C is destroyed by the UPS following nitrogen starvation. Removing this repression is important as deleting CNC1 allows enhanced cell growth under mild starvation. However, unlike oxidative stress, cyclin C is destroyed prior to its cytoplasmic translocation. This is important as targeting cyclin C to the mitochondria induces both mitochondrial fragmentation and cell death following nitrogen starvation. These results indicate that cyclin C destruction pathways are fine tuned depending on the stress and that its terminal subcellular address influences the decision between initiating cell death or cell survival pathways.

    Citation

    Stephen D Willis, Sara E Hanley, Thomas Beishke, Prasanna D Tati, Katrina F Cooper. Ubiquitin-proteasome-mediated cyclin C degradation promotes cell survival following nitrogen starvation. Molecular biology of the cell. 2020 May 01;31(10):1015-1031

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 32160104

    View Full Text